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APPLICATION AT OK TEDI MINING OF A NEURAL NETWORK 
MODEL WITHIN THE EXPERT SYSTEM FOR SAG MILL 
CONTROL

ABSTRACT
 
An expert system applied to the control of mineral process unit operations is, by its nature, the site best 
operating practice, having been designed by the local experts in conjunction with consulting metallurgists. The 
“common sense” layer in a MET (MinnovEX Expert Technology) solution determines an appropriate action for the 
current operating conditions through a developed heuristic model of the process (expert system). The magnitude 
of the setpoint change that is made is proportional to the confidence that the system has in its interpretation of 
the current conditions (fuzzy logic). The solution is always striving to take the process to a constraint and thereby 
optimise the operation. An accepted limitation of the solution is that the only way the system can determine if a 
constraint has been reached is to exceed it and then withdraw – essentially “experimenting” with the process. 
By leveraging a model, which can accurately “simulate” the process, this restriction can be circumvented by pre-
testing the set point change through a “what if” analysis and then modifying the solution as appropriate.

At Ok Tedi, the introduction in 1999 of a MET expert system for SAG milling resulted in significant improvement 
in circuit throughput. Yet, with the additional inclusion of an accurate model of the process there was still more 
that could be achieved. Hence, in 2002 a MET Neural Network model was developed and deployed to enhance 
the existing expert system solution. The principal objective of this model was predicting the effect that changes 
in SAG tonnage and density would have on the power draw of the mill - essentially a power predictor. The results
have seen a decrease in process variance with an associated increase in average circuit performance.

This paper describes the methodology by which the Neural Network model was implemented, the considerations 
and limitations when applying this technology and ultimately the results that were achieved..
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INTRODUCTION

Ok Tedi Mining Limited (OTML) is located 
in the Star Mountains in the remote 
Western Province of Papua New Guinea. 
OTML began operation in 1984 as a gold 
producer and now operates an open pit 
mine and concentrator which produces 
about 600,000 tpa of high grade 
copper and gold concentrate for Asian 
and European markets. Concentrate 
production commenced in tandem with 
gold production in late 1987, and gold 
production ceased in 1988. Production is 
achieved via conventional SAG grinding 
and flotation technology. The grinding
line at Ok Tedi consists of two SAG mills, 
each feeding a pair of ball mills. The SAG 
mills are 9.6 m diameter by 4.3 m long 
and each have about 6,800 kW installed 

MAKAT KATOM, OK TEDI MINING LIMITED; MURRAY WOOD AND MICHAEL SCHAFFER, SGS

power (slightly different power levels 
on the two mills). The mills operate 
in closed circuit with 10 mm vibrating 
screens, with a typical circulating load 
of about 15 % (and no pebble crushing). 
Flash flotation cells are installed in the 
ball mill circuit. The copper concentrate is 
transported 156 km by pipeline from the 
mill to the filter and drying plant. Dried 
concentrate is transported by barge 850 
km to a silo vessel located in the Fly 
River delta for storage and shipment.

Over the life of the plant, the 
ore characteristics have changed 
significantly. This provides a challenge 
for any advanced control system; it must 
be able to perform adequately without 
relying upon fixed attributes of the ore.

ORE TYPE AND FEED SIZE DISTRIBUTION
The ore body consists of many different 
ore types. These range from fast milling 
monzonite porphyries, oxide skarns 
and oxide porphyries, to medium and 
slow milling monzodiorites, siltstones 
and skarns. Ore hardness and size 
distribution of the SAG feed both vary 
widely. In describing ore hardness, the 
SPI (SAG Power Index) varies from 10 
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to 130 minutes, which translates to a 
SAG specific power range of about 3 to 
9 kWh/t for this site. The design of the 
ore stockpiling and conveying system 
contributes to fluctuating size distribution 
with significant short-term segregation 
occurring under certain operating 
situations. Depending on ore type and 
feed size distribution, each SAG mill will 
process between 700 and 3000 tph. The 
budgeted average total throughput is 
88,000 tpd.

THE OK TEDI ADVANCED CONTROL 
SYSTEM IMPLEMENTATION
The SAG expert system at Ok Tedi was 
completed in 1999, described previously 
by McCaffery, Katom, and Craven (2001). 
It runs within the MET (MinnovEX Expert 
Technology) toolkit based on a Gensym 
G2 platform. This provides an object 
oriented, real time environment, which
is ideal for this type of application. The 
system is installed on two mid-range 
Intel PC’s (P3 500MHz, 256 MB) with 
Windows 2000 operating systems. 
One computer is required to run the 
complete system; the other provides 
a redundant standby backup capability. 
An OPC server connected to the Bailey 
DCS and an OPC client running on the 
MET computers provide communication 
between the Bailey DCS and the system.

Gensym provides a layered product, 
GDA, built on the G2 platform that 
provides a large library of objects 
for graphical description of logic and 
statistical functions. MinnovEX has 
further extended the GDA library 
within its MET toolkit. MET provides 
an additional comprehensive library of 
objects and procedures that enable the 
easy design and rapid deployment of 
real-time expert systems for process 
control in processing plants. Objects 
from the MET/G2/GDA libraries are 
used to represent the SAG milling 
environment schematically. This approach 
results in a straightforward and flexible 
system with fast and simple connection 
to data sources.

The attributes of the Ok Tedi SAG mills 
that are used by the expert system 
are power draw, lift pressure, motor 
temperature and recycle tonnage. Fresh 
feed tonnage and feed density are the 

manipulated variables. Set point changes 
in tonnage or SAG mill feed density are 
returned to the DCS PID controllers.

Fuzzy sets are defined for all the 
measured parameters. Each attribute 
is normalised, and its span divided into 
fuzzy belief values. A typical example 
is the SAG Mill 1 Bearing pressure 
(described later in Figure 3). These fuzzy 
belief values are used as inputs to 80 
rules, which describe the knowledge of 
the mill’s control strategy. In addition to 
the attributes used by the expert system, 
the neural network also uses real-time 
size data obtained from cameras located
over the mill feed conveyor and analysed 
by a Split-OnLine vision system.

The paper is organized into two parts. 
Part 1 reviews the concepts and issues 
for implementing expert systems and 
Neural Networks. Part 2 then describes 
the execution of the Neural Network 
project on the SAG mill at Ok Tedi.

PART 1. EXPERT SYSTEMS, 
FUZZY SYSTEMS AND NEURAL 
NETWORKS

WHY ARTIFICIAL INTELLIGENCE?
Methods, targets, and equipment 
settings for normal steady-state 
operations are well understood. Most 
plants have software and instrumentation 
that handle this quite nicely. Outside 
of normal operating conditions, 

however, control system efficiency 
may deteriorate rapidly as alarms can 
cascade into uncontrollable system 
breakdown. Sometimes algorithms and 
equation-based software solutions can 
handle these abnormal situations. But 
as systems become more complex and 
interconnected, artificial intelligence 
techniques are used increasingly to 
predict failures before they occur, and 
to deal with process upsets before 
consequential problems can occur.

If process conditions could always 
be determined and modelled in 
advance, then normal equation-based 
modelling and software techniques 
would be sufficient. However, process 
disturbances and abnormal situations 
often entail a certain degree of 
unpredictability. It is the unknowns 
and unpredictable behaviour of 
processes operating in combination 
with one another that call for advanced 
techniques known collectively as artificial 
intelligence (and SAG milling circuits 
clearly exhibit unknown feed properties 
and unpredictable behavior). The areas of 
artificial intelligence are summarized in 
Figure 1.

The goal for an expert system is to 
capture the thinking of a human expert in 
a computer program so that a non-expert 
can benefit from the expert’s problem-
solving skills. The program can react
to situations by providing advice or 
taking direct action in the same manner 

Figure 1. Areas of Artificial Intelligence
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1 The ability to judge degrees of truth as opposed to absolute truth – items can be 60% sure as opposed 
to conventional crisp logic, which is true or false.

as the human expert. Real-time expert 
systems have dynamic databases 
that continuously update with current 
process information.

Expert System inference engines 
interpret the contents of their knowledge 
base in order to solve problems. They 
act as rule selectors, choosing which 
rules in the knowledge base apply to 
the problem at hand. Their primary task 
is the invocation of a key precept of an 
expert system - the concept of logic 
before data. An expert system, in order 
to emulate the decision making process, 
should “chain” through its logic prior to 
making a judgement - this is what sets 
these systems apart from a simple rule 
based “linear” system.

At a certain level of complexity, the 
expert system will be called upon to 
deal with imprecise information. At this 
point a methodology is required to deal 
with descriptive states, such as “too 
wet”, “too coarse” and many similar 
descriptive attributes.

Neural Networks are often used to 
classify complex data, and the formalism 
of Fuzzy logic1 is used to manipulate the 
information.

Fuzzy logic is based on the way the brain 
deals with inexact information, while 
neural networks are modelled after 
the physical architecture of the brain. 
Although the fundamental inspirations
for these two fields are quite different, 
there are a number of parallels that point 
out their similarities. Fuzzy systems 
and neural networks are both numerical 
model-free estimators and dynamic 
systems. They share the common ability 
to improve the intelligence of systems 
working in an uncertain, imprecise, and 
noisy environment. Both fuzzy systems 
and neural networks have been shown to 
have the capability of modelling complex 
non-linear processes to arbitrary degrees 
of accuracy. MinnovEX has successfully 
applied both techniques to a variety of 
mineral processing and metallurgical 
control systems and scheduling 
applications.

Fuzzy systems start from highly 
formalized insights about the structure 
of categories found in the real world and 
then articulate fuzzy IF-THEN rules as a 
kind of expert knowledge. Fuzzy systems 
combine fuzzy sets with fuzzy rules 
to produce overall complex non-linear 
behaviour. Neural networks, on the other 
hand, are trainable dynamic systems 
whose learning, noise tolerance, and 
generalization abilities grow out of their 
connectionist structures, their dynamics, 
and their distributed data representation. 
Neural networks have a large number 
of highly interconnected processing 
elements (nodes) which demonstrate 
the ability to learn and generalize from 
training patterns or data; these simple 
processing elements also collectively 
produce complex non-linear behaviour. 

In light of their similarities and 
differences, fuzzy systems and neural 
networks are suitable for solving many 
of the same problems and achieving 
some degree of machine intelligence. 
Their differences have prompted a 
recent surge of interest in merging 
or combining them into a functional 
system to overcome their individual 
weaknesses. This concept realises 
the benefits of both fuzzy systems 
and neural networks. That is, neural 
networks provide fuzzy systems with 
learning abilities, and fuzzy systems 
provide neural networks with a structural 
framework with high-level fuzzy IF-
THEN rule thinking and reasoning. 
Consequently, the two technologies can 
complement each other, with neural 
networks supplying the brute force 
necessary to accommodate and interpret 
large amounts of sensory data, and fuzzy 
logic providing a structural framework 
that utilizes and exploits these low-level 
results. Most neural-fuzzy applications 
are fuzzy rule-based systems in which 
neural network techniques are used for 
learning and/or adaptation.

Further details on Neural Networks are 
provided in an Appendix to the paper.

MET IMPLEMENTATION
MinnovEX has implemented the 
technologies described in a graphical 
programming environment, which is 
intended to enable the site technical 
and operating personnel to enhance 
and modify the control space so that it 
accurately reflects current best practice. 
This feature is very important since 
it allows evolutionary operation and 
similar quality systems to be applied 
throughout the life cycle, to improve the 
operation of the process while having 
a “standard operating procedure” that 
reflects current best practice. Four key 
components of the implementation 
process, discussed further here, are:

(a) knowledge capture,
(b) fuzzification of process variables,
(c) generation of fuzzy rules, and
(d) tuning of fuzzy sets and rules.

(a) Knowledge Capture
The quality of the knowledge base is the 
key to an expert system’s success. An 
expert system’s performance will only 
be as good as the information captured 
within its code. This requires more 
than just careful creation. The system 
must evolve as the operating practice 
develops. The integration process is 
the first step in this development but 
the system itself is the greatest driver 
towards the continual improvement. 
By definition the system is pushing the 
unit operation(s) to their bottlenecks 
and identifying where they exist. The 
obvious next step is to find a way around 
those limitations and it is this process 
that results in modified and improved 
“standard” operating practice. Hence an 
expert system is thought of as a ‘living 
entity’; it must evolve with changes in 
operations personnel and the process.

The MET methodology for expert system 
development is based upon exhaustive 
interviews of all the stakeholders in 
the process operation. This includes all 
the operating and technical personnel 
combined with the metallurgical 
experience and benchmarking that the 
MinnovEX team brings to the project. 
The operating procedures that are 
determined from this process are then 
reconciled into a single set of operating 
practices. These are represented 
graphically, much as they will finally be 
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implemented. Any differences between 
individuals are resolved through a 
“change management” process that 
encourages participation, discussion and 
conflict resolution.

The resulting document is used to build 
the initial knowledge base, which is 
then refined into an ultimate “site” best 
operating practice.

The on-going maintenance of the rules 
is more straightforward since rules tend 
to be changed singly (or at least within 
an independent “chain”) and evaluated in 
isolation. The modified knowledge base 
can then be tested off-line in parallel 
with the existing system as an initial 
“standard”. Once the logic has been 
debugged, and if it shows promise, it 
can then be tried online. At that stage 
the logic either becomes part of the 
permanent system or the original 
knowledge base is reinstated.

(b) Fuzzification of Process Variables
The normalised process variables are 
fed through the Fuzzifier (see Figures 
2 and 3). This section determines 
the confidence of membership of 
the process variable for each of the 
classifications. The x-axis of Figure 3 is 
normalized bearing pressure, defined 

Figure 2. Fuzzy Logic Controller

Figure 3. Fuzzifier and Fuzzy Class Membership

as [(very high pressure – measured 
pressure) / (very high pressure – low 
pressure)]. A mid range pressure (which 
would normally be ‘pressure OK’) would 
have a normalized value of about 0.5. In 
the case referenced here of normalised 
bearing pressure, at a normalised value 
of 0.3, there is a 50% possibility that the 
pressure is low and a 50% possibility 
that the pressure is OK. At a value of 
about 0.8, there is a 50% possibility 
that the pressure is OK and a 50% 
possibility that the pressure is High. 
Similar construction continues through to 
a normalised value of 1.0 where there is 
a 50 possibility that the value is very high 

and 50% possibility that the pressure is 
extreme. At 1.1 the pressure is definitely 
extreme. If we look at the low end, 
where the values are a bit better spaced, 
if the value was about 0.2, then there 
would be about a 30% possibility that 
the pressure was OK and about a 70% 
possibility that the pressure was low.

(c) Generation of Fuzzy Rules
A typical rule is shown in Figure 4. All the 
inputs to the rule, shown on the left are 
fuzzy beliefs. The output from the rule is 
a belief value that an action should occur. 
The stronger the belief, the larger is the 
change that is made to the setpoint of 



5SGS MINERALS SERVICES TECHNICAL BULLETIN 2003-18

Figure 4. Graphical Fuzzy Rule and Defuzzifier

the appropriate variable. If the belief 
value is 1.0, then the maximum value 
appropriate for that condition is taken. If 
the belief value is 0.6 (a little greater than 
‘don’t know’), a much smaller action will 
be taken. The system then waits for the 
process to respond to the change, and 
re-evaluates its actions. In this way, if 
an error is made, the consequences are 
small, and would increase the likelihood 
that the correct action is taken at the 
next evaluation.

(d) Tuning of Fuzzy sets and Rules
There is additional information 
that is required for the successful 
implementation of a Fuzzy Logic Expert 
System. The membership function 
for each of the variables needs to be 
carefully chosen. The decision about 
what constitutes “TOO HIGH” and what 
is “EXTREME” requires careful analysis. 
Both the magnitude of the setpoint 
changes that correspond to a given 
condition and the time that must elapse 
before the effect of a setpoint change 
can be evaluated must be considered 
on a case-by-case basis. Effective tuning 
requires a significant investment of 
on-site time, especially for the tuning of 
variables that are rates-of-change.

COMPARISON OF EXPERT SYSTEMS AND 
NEURAL NETWORKS
The two forms of artificial intelligence 
used in the Ok Tedi Control system now 

have been described. The MET expert 
system solution contains knowledge 
derived from human operators and 
technical experts. It is, essentially, fixed 
in its response to its stimuli. Although 
the MET design makes it easy for 
metallurgists or operating personnel 
to modify its behaviour, it does require 
human intervention to change. It has 
the advantage that it can respond to 
events, which at the time of design 
were hypothetical. This allows the expert 
system to be designed to control events 
that will not necessarily ever happen, 
such as overloads and failures. The 
Neural Network on the other hand, has 
no prior knowledge of the process. All 
of its knowledge of the process comes 
from observing the process responses 
to stimuli. This limits its usefulness to 
operating in the process envelope near 
points that have occurred previously. 
This is a significant limitation when the 
intention is to operate the process at the 
limits of the operating envelope, i.e. at 
the constraints.

The conventional approach would be 
to invert the Neural Network into a 
controller (NN controller) and use the 
expert system to define the regions in 
which the NN controller may operate 
and provide defined behaviour outside 
that region. This approach works well 
when the Neural Network is being used 
for optimising the process. The expert 

system would shift the process into the 
vicinity of the optimal operating point, 
then transfer control to the NN controller.
If there were a significant process 
disturbance, the expert system would 
inhibit the Neural Network and manage 
the disturbance.

However, this approach is not appropriate 
when the objective is to run the process 
against constraints. The approach that 
MinnovEX has used in this situation is 
almost the opposite of this strategy. 
The normal control is provided by the 
expert system, with the Neural Network 
modifying the behaviour of the expert 
system near the constraints. The Neural 
Network model operates in simulator 
mode with the expert system using it in 
a “what if” capacity. The expert system 
defines a desired change and tests the 
results in the model. The model then 
predicts the outcome expected by 
the set point manipulations. The logic 
around the Neural Network estimates 
the confidence of the prediction of 
the network, and if the confidence in 
the prediction of the network is high, 
then the Neural Network modifies 
the behaviour of the expert system as 
appropriate.

When the system starts off, with no 
history, or when there has been a 
significant change in the ore properties, 
then the confidence of the neural 
network’s prediction is low. Over time, 
it learns the behaviour of the process, 
and the confidence of its predictions 
increase.

OPERATION AGAINST CONSTRAINTS
Unlike when a process is operated 
manually or with PID control, an expert 
system will continue to manipulate 
the setpoints until the process is 
operating against a constraint. This 
has two consequences. The first is 
that, given that the control system is 
correctly designed, the process is always 
operating close to optimum conditions. 
The second is that the true operating 
constraints are always identified. This 
information becomes invaluable when 
trying to improve the plant operation.
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PART 2. THE OK TEDI NEURAL 
NETWORK FOR SAG MILLING

The SAG expert system installed in 1999 
produced significant improvement in the 
mill operation. The metric that Ok Tedi 
chose to measure the performance of 
the system was the power draw of the 
SAG mills. This is commonly used at Ok 
Tedi as a key performance indicator, due 
to the highly variable nature of the ore 
and the difficulty in benchmarking. It is 
an appropriate indicator, as the grind is 
kept relatively constant and the mill is 
power limited. Ok Tedi uses a formula by 
which this can be directly translated into 
throughput. After installation of the MET 
expert system SAG2 demonstrated a 
5.3% increase in throughput (McCaffery, 
Katom, and Craven, 2001).

The system was well accepted by the 
operators, and was controlling the mills 
for greater than 95% of the time. The 
next step in the controller evolution was 
to attempt to use a higher percentage 
of the installed capacity. Analysis 
showed that there was variability in the 
power draw when operating close to 
the limiting power. The reason for this 
was that the expert system would add 
tonnes in an appropriate manner, and 
a short time later it would detect that 
the mill was beginning to overload. It 
would then decrease the feed tonnes, 
to prevent the mill going into overload. 
It is inevitable that an expert system 
will cycle around its operating point as it 
continually tries to push to the constraint 
(in this case overload), so this behaviour 
was not entirely unexpected (it was still 
significantly improved upon the original 
installed system). The problem was 
exacerbated when a change in the ore 
properties occurred.

Options that were considered included 
detuning the expert system - this would 
increase the risk when a genuine rapid 
response was required. What was 
required was gain scheduling based upon
a moving target, the point at which 
overload was likely to occur. A neural 
network is an ideal tool for this task, 
but there were some constraints on 
the complexity that the network could 
have due to the variability of the feed. It 
was found that the maximum time that 

the mill process could be considered 
stationary was of the order of two 
hours. The minimum sampling time over 
which most of the variables could be 
considered to be reasonably uncorrelated 
was approximately one minute. This 
meant that the maximum number of 
reasonably independent samples that 
could be used for training the network 
was of 120.

The challenge was to modify the 
controller so that it had prior knowledge 
of when an overload was likely to occur, 
and to moderate the actions of the 
expert system when this occurred. The 
structure had to be such that it could be 
reasonably well trained with 120 data 
samples. Due to the variability of the 
ore, it could not be assumed that the 
model applied at a given time would be 
applicable a few minutes later; therefore, 
on-going validation of the network 
predictions were essential.

The final design of the network had 
three components: a trainer, a validation 
network and a predictor.

The Neural Network operates in two 
distinct time frames simultaneously. 
In the first instance, it operates three 
minutes behind real time. In this case, 
it should be accurately predicting the 
current process operating environment, 
except for the effects of any setpoint 
changes made during the last three 
minutes. A first order approximation is 
made to the current process variables
to allow for setpoint changes that 
have been made in that time, and 
the corrected process variables are 
compared with the predictions from 

the neural network. This neural network 
model is used to determine the validity 
of the model at the present time and 
is necessary because the system is 
operating on the limits of the training 
domain of the neural network - there will 
always be doubt about the validity of the 
model in this regime.

In the second time frame, the NN 
operates in real time and predicts the 
tonnage and density setpoints required 
to achieve the target mill power three 
minutes into the future. A z-score is 
calculated for the prediction based on 
the standard deviation and the mean of 
the prediction error for the current value 
and the setpoint deviation predicted 
by the NN. An inverse normal curve is 
used to provide the probability that the 
new setpoint prediction is not due to 
measurement variability.

The inputs to the network are shown 
in Table 1. There are a total of 24 input 
variables based upon the following 
variables.

Figure 5. Training Neural Network
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Table 1. Inputs to the Training Network

Figure 6. An Expert System Rule Modified by the NN

Figure 7. Improvement in Power Draw

SOURCE

Bearing Pressure

SAG Mill Power

SAG Mill Motor Temperature

Recycle tph

Fresh Feed tph

P100 of the Mill Feed

P80 of the Mill Feed

P50 of the Mill Feed

P20 of the Mill Feed

Stockpile Level

Target Power

Feed Density

Corrected Feed Tonnage

Feed Density

The last two rows are the desired 
outputs: the predicted tonnage and 
feed density at the current time, to be 
calculated based upon values from a 
minimum of three minutes ago. The 
structure of the training network is 
shown in Figure 5.

The network configured from this data is 
then used to predict the current values 
of mill feed rate and density. The values 
obtained from this network are used to 
develop a confidence interval, which in 
turn will be used to assess the reliability 
of the predictions, based on current 
data, of the mill feed rate and density, 
in three minutes time. If the predictions 
are close to the standard deviation of 
the prediction error, then there is little 
confidence that the value is not solely 
a result of prediction error. If the value 
predicted is well outside the error band, 
then there is a high level of confidence 
that the prediction is real. This intuitive 
concept is handled formally by applying 
a t-test.

The results obtained from the NN 
predictor are used to calculate the 
predicted slope of the feedrate / power 
curve in three minutes. These predictions 
are then used as inputs to a fuzzy set.
Finally the confidence of the prediction 
is used to modify the expert system 
decisions as appropriate. For example; 
if the expert system decides that a 
10 tph increase is justified, then this 

value is inserted into the NN simulator. 
The simulator will then determine the 
impact of the change and report the 
findings back to the expert system with 
a confidence factor. If the outcome is 
that the simulator determines that the 
increase will push the mill into overload 
with a 70% degree of certainty then 
the expert system setpoint change 
is modified to 3 tph (change * (100 - 
certainty)). If the model is 60% sure then 
the change would be 4 tph and if it is 
90% sure the change is 1 tph. A typical 
expert system rule is shown in Figure 6.

RESULTS
The mean power draw increased 
from 7.35 MW to 7.48 MW. Equally 
significantly, the standard deviation of 
the power draw decreased from 0.38 
MW to 0.20 MW. This corresponds 
to a 35% increase over the increase 
obtained with the MET expert system 

alone which represents (based on Ok 
Tedi relationships) approximately another 
2% increase in throughput, with less 
variation in tonnage and the resulting 
benefits to downstream processes 
(Figure 7). The economic impact of 
the improved control can be evaluated 
from the increased throughput, and the 
increased recovery from a more stable 
flotation feed.

FURTHER OPPORTUNITIES
The work to date has focussed on 
managing the grinding circuit to cope 
with disturbances in the mill feed, and 
minimise the variability in flotation feed 
contributed by the grinding circuit.
Recent improvements to the process 
control communication provides the 
opportunity to manipulate the mill feed, 
based upon the grinding characteristics 
of the ore, to reduce the shortterm 
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variability in the flotation feed. The long-
term variability still will be determined by 
the mine plan.

The next step is to link the mine plan 
to the control solution, by tracking 
and following the variability from 
the ore body to the mill through the 
incorporation of CEET (Comminution
Economic Evaluation Tool) and FLEET 
(Flotation Economic Evaluation Tool) 
models. This will provide true “feed 
forward” control allowing the system 
to anticipate changes in circuit behavior 
before these changes occur and then 
regulate the changes with traditional 
responsive feed back control. This 
process has already begun with the 
incorporation of stockpile information 
in the system and the measurement of 
SPI values on the ore body. With better 
knowledge of what is coming into the 
process the system will be able to 
optimise for the specific opportunities 
that exist. This may include adjusting the 
load balance between the SAG and Ball
Mills or adjusting a target grind to assist 
in flotation.

CONCLUSION

The application of neural network 
modelling has been successfully applied 
to SAG mill control at Ok Tedi. The 
improvement in the mill power draw 
is 35% over the already substantial 
improvement realised with traditional 
fuzzy expert control alone. This resulted 
in an additional 2% calculated throughput 
on top of the 5.3% quoted in an earlier 
paper. An important supplementary 
benefit of this technology was the 
reduction in variability, which ultimately 
benefits flotation - although this benefit 
has not been quantified. The Neural 
Network has shown itself to be robust 
even under extremely difficult conditions.

Figure 8. Biological neuron

Figure 9. Artificial Neuron
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Figure 10. Three layer Back-propagation Network

Figure 11. Supervised learning
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APPENDIX - OVERVIEW OF 
NEURAL NETWORKS

A Neural Network is an interconnected 
assembly of simple processing 
elements, units or nodes, whose 
functionality is loosely based on the 
animal neuron (see Figure 8). The 
processing ability of the network is 
stored in the inter-unit connection 
strengths, or weights, obtained by a 
process of adaptation to, or learning 
from, a set of training patterns. The 
models are often referred to as “data 
driven” as they are empirical models 
that are developed using data alone and 
frequently have the ability to continually 
“evolve” (retrain/calibrate) based on real 
time data.

In an animal neuron, electrical pulses 
travelling along the axon transmit 
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signals. These pulses impinge on the 
neuron at terminals called synapses. 
The neuron sums or integrates the 
effects of thousands of such pulses over 
its dendritic tree and over time. If the 
integrated potential at the axon-hillock 
exceeds a threshold, the cell ‘fires’ and 
generates an action potential or spike 
which starts to travel along its axon. This 
then initiates the whole sequence of 
events again in neurons contained in the 
efferent pathway (Gurney, 1997).

It is generally accepted that, in real 
neurons, information is encoded in 
terms of the frequency of firing rather 
than merely the presence or absence 
of a pulse. Phase information may also 
be important but the nature of this 
mechanism is less certain.

A common artificial realisation of the 
neuron is shown in Figure 9.

For this type of artificial neuron, all the 
inputs, multiplied by the weights are 
summed. This sum is then the input 
to an activation function. One that is 
commonly used is a sigmoid function. 
The sigmoid function produces an output 
that closely approximates a cumulative 
normal distribution. In the form used 
here, if the sum of the inputs is 0.0, then 

the output is 0.0, and if the sum of the 
inputs is ∞ then the output is 1.0.

Much like an animal brain, many neurons 
are interconnected to produce an artificial 
neural network. The neural networks 
used at Ok Tedi consist of approximately 
50 neurons. By comparison with any 
natural neural network, they are very 
small.

The type of network that is used at Ok 
Tedi is a back propagation network. 
Back propagation refers to the way the 
network is trained. A simple 3 input, 3 
output with 1 hidden layer network
is shown in Figure 10.

For neural networks to be useful, they 
must be trained to produce the desired 
output. There are three general classes 
of learning: unsupervised, reinforcement 
and supervised. In unsupervised 
learning, there is no teacher to provide 
any feedback information. The network 
must discover patterns, features, 
regularities, correlations, or categories in 
the input data and code for them in the 
output by itself. This type of network is 
used for identifying patterns in a set of 
data.

In supervised learning, it is assumed 
that the correct “target” output values 
are known for each input pattern. But 
in some situations only less detailed 
information is available. For example, the
NN may only be told that its current 
actual output is “too high” or “50% 
correct.”

In reinforcement learning the network 
still receives some feedback from its 
environment. But the feedback (i.e., the 
reinforcement signal) is only evaluative 
rather than instructive. That is, it just 
says how good or how bad a particular 
output is and provides no hint as to what 
the right answer should be (Lin and Lee, 
1995).

At Ok Tedi, supervised learning was 
used, so that the trainer had available 
to it actual response data. The system 
is shown schematically in Figure 11. In 
other words the model had both the 
inputs as well as the outputs against 
which it could be verified and validated.


